Search results
Results from the WOW.Com Content Network
The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]
With specific values for C a and K a this quadratic equation can be solved for x. Assuming [4] that pH = −log 10 [H +] the pH can be calculated as pH = −log 10 x. If the degree of dissociation is quite small, C a ≫ x and the expression simplifies to = and pH = 1 / 2 (pK a − log C a).
The pH range is commonly given as zero to 14, but a pH value can be less than 0 for very concentrated strong acids or greater than 14 for very concentrated strong bases. [2] The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. [3]
The equations, derived from the acidity constant and basicity constant, states that when pH equals the pK a or pK b value of the indicator, both species are present in a 1:1 ratio. If pH is above the p K a or p K b value, the concentration of the conjugate base is greater than the concentration of the acid, and the color associated with the ...
The Charlot equation, named after Gaston Charlot, is used in analytical chemistry to relate the hydrogen ion concentration, and therefore the pH, with the formal analytical concentration of an acid and its conjugate base. It can be used for computing the pH of buffer solutions when the approximations of the Henderson–Hasselbalch equation ...
This equation is the equation of a straight line for as a function of pH with a slope of () volt (pH has no units). This equation predicts lower E h {\displaystyle E_{h}} at higher pH values. This is observed for the reduction of O 2 into H 2 O, or OH − , and for reduction of H + into H 2 .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The pH after the equivalence point depends on the concentration of the conjugate base of the weak acid and the strong base of the titrant. However, the base of the titrant is stronger than the conjugate base of the acid. Therefore, the pH in this region is controlled by the strong base. As such the pH can be found using the following: [1]