Search results
Results from the WOW.Com Content Network
A schematic picture of the skip list data structure. Each box with an arrow represents a pointer and a row is a linked list giving a sparse subsequence; the numbered boxes (in yellow) at the bottom represent the ordered data sequence. Searching proceeds downwards from the sparsest subsequence at the top until consecutive elements bracketing the ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Shuffling can also be implemented by a sorting algorithm, namely by a random sort: assigning a random number to each element of the list and then sorting based on the random numbers. This is generally not done in practice, however, and there is a well-known simple and efficient algorithm for shuffling: the Fisher–Yates shuffle .
Timsort is a hybrid, stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data. It was implemented by Tim Peters in 2002 for use in the Python programming language. The algorithm finds subsequences of the data that are already ordered (runs) and uses them to sort the ...
The rows represent instances of that type of entity (such as "Lee" or "chair") and the columns represent values attributed to that instance (such as address or price). For example, each row of a class table corresponds to a class, and a class corresponds to multiple students, so the relationship between the class table and the student table is ...
In the bingo sort variant, items are sorted by repeatedly looking through the remaining items to find the greatest value and moving all items with that value to their final location. [2] Like counting sort , this is an efficient variant if there are many duplicate values: selection sort does one pass through the remaining items for each item ...
A further relaxation requiring only a list of the k smallest elements, but without requiring that these be ordered, makes the problem equivalent to partition-based selection; the original partial sorting problem can be solved by such a selection algorithm to obtain an array where the first k elements are the k smallest, and sorting these, at a total cost of O(n + k log k) operations.
Here input is the input array to be sorted, key returns the numeric key of each item in the input array, count is an auxiliary array used first to store the numbers of items with each key, and then (after the second loop) to store the positions where items with each key should be placed, k is the maximum value of the non-negative key values and ...