Ad
related to: differential geometry fields test on word
Search results
Results from the WOW.Com Content Network
Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics.
Vector field; Tensor field; Differential form; Exterior derivative; Lie derivative; pullback (differential geometry) pushforward (differential) jet (mathematics) Contact (mathematics) jet bundle; Frobenius theorem (differential topology) Integral curve
Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).
Curl measures how much "rotation" a vector field has near a point. The Lie derivative is the rate of change of a vector or tensor field along the flow of another vector field. On vector fields, it is an example of a Lie bracket (vector fields form the Lie algebra of the diffeomorphism group of the manifold). It is a grade 0 derivation on the ...
Connections are of central importance in modern geometry in large part because they allow a comparison between the local geometry at one point and the local geometry at another point. Differential geometry embraces several variations on the connection theme, which fall into two major groups: the infinitesimal and the local theory.
That is, df is the unique 1-form such that for every smooth vector field X, df (X) = d X f , where d X f is the directional derivative of f in the direction of X. The exterior product of differential forms (denoted with the same symbol ∧) is defined as their pointwise exterior product.
The divergence of a vector field extends naturally to any differentiable manifold of dimension n that has a volume form (or density) μ, e.g. a Riemannian or Lorentzian manifold. Generalising the construction of a two-form for a vector field on R 3, on such a manifold a vector field X defines an (n − 1)-form j = i X μ obtained by contracting ...
In the study of mathematics, and especially of differential geometry, fundamental vector fields are instruments that describe the infinitesimal behaviour of a smooth Lie group action on a smooth manifold. Such vector fields find important applications in the study of Lie theory, symplectic geometry, and the study of Hamiltonian group actions.
Ad
related to: differential geometry fields test on word