Search results
Results from the WOW.Com Content Network
Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics.
In mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (dα = 0), and an exact form is a differential form, α, that is the exterior derivative of another differential form β. Thus, an exact form is in the image of d, and a closed form is in the kernel of d.
In multivariate calculus, a differential or differential form is said to be exact or perfect (exact differential), as contrasted with an inexact differential, if it is equal to the general differential for some differentiable function in an orthogonal coordinate system (hence is a multivariable function whose variables are independent, as they are always expected to be when treated in ...
In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the surface at that point. Namely, given a surface X in Euclidean space R 3 , the Gauss map is a map N : X → S 2 (where S 2 is the unit sphere ) such that for each p in X , the function value N ( p ) is ...
The differential geometry of surfaces is concerned with a mathematical understanding of such phenomena. The study of this field, which was initiated in its modern form in the 1700s, has led to the development of higher-dimensional and abstract geometry, such as Riemannian geometry and general relativity. [original research?]
A (,)-tensor field is a differential -form, a (,)-tensor field is a vector field, and a (,)-tensor field is -vector field. While differential forms are widely studied as such in differential geometry and differential topology, multivector fields are often encountered as tensor fields of type (,), except in the context of the geometric algebra ...
Stochastic differential geometry provides insight into classical analytic problems, and offers new approaches to prove results by means of probability. For example, one can apply Brownian motion to the Dirichlet problem at infinity for Cartan-Hadamard manifolds [4] or give a probabilistic proof of the Atiyah-Singer index theorem. [5]
In the mathematical theory of elasticity, Saint-Venant's compatibility condition defines the relationship between the strain and a displacement field by = (+) where ,. Barré de Saint-Venant derived the compatibility condition for an arbitrary symmetric second rank tensor field to be of this form, this has now been generalized to higher rank symmetric tensor fields on spaces of dimension