Ad
related to: differential geometry fields test on youtubekutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics.
See also multivariable calculus, list of multivariable calculus topics. Manifold. Differentiable manifold; Smooth manifold; Banach manifold; Fréchet manifold; Tensor analysis. Tangent vector
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold M (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there.
Curl measures how much "rotation" a vector field has near a point. The Lie derivative is the rate of change of a vector or tensor field along the flow of another vector field. On vector fields, it is an example of a Lie bracket (vector fields form the Lie algebra of the diffeomorphism group of the manifold). It is a grade 0 derivation on the ...
valid for any vector fields X and Y and any tensor field T.. Considering vector fields as infinitesimal generators of flows (i.e. one-dimensional groups of diffeomorphisms) on M, the Lie derivative is the differential of the representation of the diffeomorphism group on tensor fields, analogous to Lie algebra representations as infinitesimal representations associated to group representation ...
Intuitively, a vector field is best visualized as an "arrow" attached to each point of a region, with variable length and direction. One example of a vector field on a curved space is a weather map showing horizontal wind velocity at each point of the Earth's surface. Now consider more complicated fields.
In the study of mathematics, and especially of differential geometry, fundamental vector fields are instruments that describe the infinitesimal behaviour of a smooth Lie group action on a smooth manifold. Such vector fields find important applications in the study of Lie theory, symplectic geometry, and the study of Hamiltonian group actions.
The Riemannian connection or Levi-Civita connection [9] is perhaps most easily understood in terms of lifting vector fields, considered as first order differential operators acting on functions on the manifold, to differential operators on sections of the frame bundle. In the case of an embedded surface, this lift is very simply described in ...
Ad
related to: differential geometry fields test on youtubekutasoftware.com has been visited by 10K+ users in the past month