enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Emissivity - Wikipedia

    en.wikipedia.org/wiki/Emissivity

    (A comparison with Planck's law is used if one is concerned with particular wavelengths of thermal radiation.) The ratio varies from 0 to 1. The surface of a perfect black body (with an emissivity of 1) emits thermal radiation at the rate of approximately 448 watts per square metre (W/m 2) at a room temperature of 25 °C (298 K; 77 °F).

  3. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    Kirchhoff's law of thermal radiation has a refinement in that not only is thermal emissivity equal to absorptivity, it is equal in detail. Consider a leaf. It is a poor absorber of green light (around 470 nm), which is why it looks green. By the principle of detailed balance, it is also a poor emitter of green light.

  4. Thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Thermal_radiation

    Thermal radiation is the emission of electromagnetic waves from all matter that has a temperature greater than absolute zero. [5] [2] Thermal radiation reflects the conversion of thermal energy into electromagnetic energy. Thermal energy is the kinetic energy of random movements of atoms and molecules in matter. It is present in all matter of ...

  5. Low emissivity - Wikipedia

    en.wikipedia.org/wiki/Low_emissivity

    Low emissivity (low e or low thermal emissivity) refers to a surface condition that emits low levels of radiant thermal (heat) energy. All materials absorb, reflect, and emit radiant energy according to Planck's law but here, the primary concern is a special wavelength interval of radiant energy, namely thermal radiation of materials.

  6. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    What is non-trivial is the proposition that , which is a consequence of Kirchhoff's law of thermal radiation. [4]: 385 ) A so-called grey body is a body for which the spectral emissivity is independent of wavelength, so that the total emissivity, , is a constant.

  7. Thermal emittance - Wikipedia

    en.wikipedia.org/wiki/Thermal_emittance

    Thermal emittance or thermal emissivity is the ratio of the radiant emittance of heat of a specific object or surface to that of a standard black body.Emissivity and emittivity are both dimensionless quantities given in the range of 0 to 1, representing the comparative/relative emittance with respect to a blackbody operating in similar conditions, but emissivity refers to a material property ...

  8. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    Planck radiation is the greatest amount of radiation that any body at thermal equilibrium can emit from its surface, whatever its chemical composition or surface structure. [9] The passage of radiation across an interface between media can be characterized by the emissivity of the interface (the ratio of the actual radiance to the theoretical ...

  9. Idealized greenhouse model - Wikipedia

    en.wikipedia.org/wiki/Idealized_greenhouse_model

    A key to understanding the greenhouse effect is Kirchhoff's law of thermal radiation. At any given wavelength the absorptivity of the atmosphere will be equal to the emissivity. Radiation from the surface could be in a slightly different portion of the infrared spectrum than the radiation emitted by the atmosphere.