Search results
Results from the WOW.Com Content Network
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
In mathematics, the term undefined refers to a value, function, or other expression that cannot be assigned a meaning within a specific formal system. [ 1 ] Attempting to assign or use an undefined value within a particular formal system, may produce contradictory or meaningless results within that system.
l = slope length α = angle of inclination. The grade (US) or gradient (UK) (also called stepth, slope, incline, mainfall, pitch or rise) of a physical feature, landform or constructed line is either the elevation angle of that surface to the horizontal or its tangent. It is a special case of the slope, where zero indicates horizontality. A ...
Functions which are undefined at = have no -intercept. If the function is linear and is expressed in slope-intercept form as f ( x ) = a + b x {\displaystyle f(x)=a+bx} , the constant term a {\displaystyle a} is the y {\displaystyle y} -coordinate of the y {\displaystyle y} -intercept.
[3] [4] Likewise, for a function of several real variables, a critical point is a value in its domain where the gradient norm is equal to zero (or undefined). [ 5 ] This sort of definition extends to differentiable maps between R m {\displaystyle \mathbb {R} ^{m}} and R n , {\displaystyle \mathbb {R} ^{n},} a critical point ...
In two dimensions, the equation for non-vertical lines is often given in the slope–intercept form: = + where: m is the slope or gradient of the line. b is the y-intercept of the line. x is the independent variable of the function y = f(x).
the slope field is an array of slope marks in the phase space (in any number of dimensions depending on the number of relevant variables; for example, two in the case of a first-order linear ODE, as seen to the right). Each slope mark is centered at a point (,,, …,) and is parallel to the vector
A point where the second derivative vanishes but does not change its sign is sometimes called a point of undulation or undulation point. In algebraic geometry an inflection point is defined slightly more generally, as a regular point where the tangent meets the curve to order at least 3, and an undulation point or hyperflex is defined as a ...