enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    For a tensor field of order k > 1, the tensor field of order k is defined by the recursive relation = where is an arbitrary constant vector. A tensor field of order greater than one may be decomposed into a sum of outer products, and then the following identity may be used: = ().

  4. Field line - Wikipedia

    en.wikipedia.org/wiki/Field_line

    A vector field defines a direction and magnitude at each point in space. A field line is an integral curve for that vector field and may be constructed by starting at a point and tracing a line through space that follows the direction of the vector field, by making the field line tangent to the field vector at each point.

  5. Helmholtz decomposition - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_decomposition

    A terminology often used in physics refers to the curl-free component of a vector field as the longitudinal component and the divergence-free component as the transverse component. [22] This terminology comes from the following construction: Compute the three-dimensional Fourier transform F ^ {\displaystyle {\hat {\mathbf {F} }}} of the vector ...

  6. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. [5] [6] In particular, a vector field on can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form.

  7. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    Vector fields are commonly used to create patterns in computer graphics. Here: abstract composition of curves following a vector field generated with OpenSimplex noise. A vector field for the movement of air on Earth will associate for every point on the surface of the Earth a vector with the wind speed and direction for that point.

  8. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    In orthogonal curvilinear coordinates of 3 dimensions, where = ; = = one can express the gradient of a scalar or vector field as = = = ; = For an orthogonal basis = = = The divergence of a vector field can then be written as = ( ) Also, = = = ; = = ; = = Therefore, = ( ) We can get an expression for the Laplacian in a similar manner by noting ...

  9. Integral curve - Wikipedia

    en.wikipedia.org/wiki/Integral_curve

    This equation says that the vector tangent to the curve at any point x(t) along the curve is precisely the vector F(x(t)), and so the curve x(t) is tangent at each point to the vector field F. If a given vector field is Lipschitz continuous, then the Picard–Lindelöf theorem implies that there exists a unique flow for small time.