Search results
Results from the WOW.Com Content Network
Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are in bold and superior highly composite numbers are starred. ... 15, 21, 27, 35 ...
A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N. For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively.
The notations d(n), ν(n) and τ(n) (for the German Teiler = divisors) are also used to denote σ 0 (n), or the number-of-divisors function [1] [2] (OEIS: A000005). When z is 1, the function is called the sigma function or sum-of-divisors function , [ 1 ] [ 3 ] and the subscript is often omitted, so σ ( n ) is the same as σ 1 ( n ) ( OEIS ...
The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
A divisor of that is not a trivial divisor is known as a non-trivial divisor (or strict divisor [6]). A nonzero integer with at least one non-trivial divisor is known as a composite number , while the units −1 and 1 and prime numbers have no non-trivial divisors.
The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.
M = 15 The 15 perfect matchings of K 6 15 as the difference of two positive squares (in orange).. 15 is: The eighth composite number and the sixth semiprime and the first odd and fourth discrete semiprime; [1] its proper divisors are 1, 3, and 5, so the first of the form (3.q), [2] where q is a higher prime.