Search results
Results from the WOW.Com Content Network
This chain of decay was later shown to have the mass number 99, and (...) the 6.6-h activity acquired the designation ‘technetium-99m. Later in 1940, Emilio Segrè and Chien-Shiung Wu published experimental results of an analysis of fission products of uranium-235, including molybdenum-99, and detected the presence of an isomer of element 43 ...
Method Output Status MadGraph5: Any Model 1/2->n 2->8 complete, massive, helicity, color, decay chain what is MG5: HA (automatic generation) Output PD: Grace: SM/MSSM 2->n 2->6 complete,massive,helicity,color Manual v2.0: HA Output PD: CompHEP: Model Max FS Tested FS Short description Publication method Output Status CalcHEP: Model Max FS Tested FS
The metastable technetium-99m (99m Tc) is a short-lived (half-life about 6 hours) nuclear isomer used in nuclear medicine, produced from molybdenum-99. It decays by isomeric transition to technetium-99, a desirable characteristic, since the very long half-life and type of decay of technetium-99 imposes little further radiation burden on the body.
The Bateman equation predicts the relative quantities of all the isotopes that compose a given decay chain once that decay chain has proceeded long enough for some of its daughter products to have reached the stable (i.e., nonradioactive) end of the chain. A decay chain that has reached this state, which may require billions of years, is said ...
In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]
For technetium-98 and heavier isotopes, the primary mode is beta emission (the emission of an electron or positron), producing ruthenium (Z = 44), with the exception that technetium-100 can decay both by beta emission and electron capture. [59] [60] Technetium also has numerous nuclear isomers, which are isotopes with one or more excited nucleons.
The use of metal-free columns allows direct labeling of 68 Ga without prepurification, hence making production of gallium-68-radiolabeled compounds more convenient. The mobile phase is a solvent able to elute (wash out) gallium-68 (III) ( 68 Ga 3+ ) after it has been produced by electron capture decay from the immobilized (absorbed) germanium-68.
Technetium (43 Tc) is one of the two elements with Z < 83 that have no stable isotopes; the other such element is promethium. [2] It is primarily artificial, with only trace quantities existing in nature produced by spontaneous fission (there are an estimated 2.5 × 10 −13 grams of 99 Tc per gram of pitchblende) [3] or neutron capture by molybdenum.