Search results
Results from the WOW.Com Content Network
Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are in bold and superior highly composite numbers are starred. ... 3, 5, 6, 10, 15 ...
For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively. A related concept is that of a largely composite number , a positive integer that has at least as many divisors as all smaller positive integers.
Divisor function d(n) up to n = 250 Prime-power factors In number theory , a superior highly composite number is a natural number which, in a particular rigorous sense, has many divisors . Particularly, it is defined by a ratio between the number of divisors an integer has and that integer raised to some positive power.
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.
More generally, an a-by-b rectangle can be covered with square tiles of side length c only if c is a common divisor of a and b. For example, a 24-by-60 rectangular area can be divided into a grid of: 1-by-1 squares, 2-by-2 squares, 3-by-3 squares, 4-by-4 squares, 6-by-6 squares or 12-by-12 squares.
The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10 In mathematics , a divisor of an integer n , {\displaystyle n,} also called a factor of n , {\displaystyle n,} is an integer m {\displaystyle m} that may be multiplied by some integer to produce n . {\displaystyle n.} [ 1 ] In this case, one also says that n {\displaystyle n ...
The abundancy index of n is the ratio σ(n)/n. [7] Distinct numbers n 1, n 2, ... (whether abundant or not) with the same abundancy index are called friendly numbers. The sequence (a k) of least numbers n such that σ(n) > kn, in which a 2 = 12 corresponds to the first abundant number, grows very quickly (sequence A134716 in the OEIS).