enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n

  3. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively. A related concept is that of a largely composite number , a positive integer that has at least as many divisors as all smaller positive integers.

  4. Superior highly composite number - Wikipedia

    en.wikipedia.org/wiki/Superior_highly_composite...

    Divisor function d(n) up to n = 250 Prime-power factors In number theory , a superior highly composite number is a natural number which, in a particular rigorous sense, has many divisors . Particularly, it is defined by a ratio between the number of divisors an integer has and that integer raised to some positive power.

  5. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10 In mathematics , a divisor of an integer n , {\displaystyle n,} also called a factor of n , {\displaystyle n,} is an integer m {\displaystyle m} that may be multiplied by some integer to produce n . {\displaystyle n.} [ 1 ] In this case, one also says that n {\displaystyle n ...

  6. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.

  7. Friendly number - Wikipedia

    en.wikipedia.org/wiki/Friendly_number

    [2] [3] J.Ward [4] proved that any positive integer other than 10 with abundancy index 9/5 must be a square with at least six distinct prime factors, the smallest being 5. Further, at least one of the prime factors must be congruent to 1 modulo 3 and appear with an exponent congruent to 2 modulo 6 in the prime power factorization of n ...

  8. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    The smallest odd integer with abundancy index exceeding 3 is 1018976683725 = 3 3 × 5 2 × 7 2 × 11 × 13 × 17 × 19 × 23 × 29. [8] If p = (p 1, ..., p n) is a list of primes, then p is termed abundant if some integer composed only of primes in p is abundant. A necessary and sufficient condition for this is that the product of p i /(p i − ...

  9. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The elements 2 and 1 + √ −3 are two maximal common divisors (that is, any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + √ −3, but they are not associated, so there is no greatest common divisor of a and b.