enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Model-free (reinforcement learning) - Wikipedia

    en.wikipedia.org/wiki/Model-free_(reinforcement...

    In reinforcement learning (RL), a model-free algorithm is an algorithm which does not estimate the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), [1] which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward ...

  3. Q-learning - Wikipedia

    en.wikipedia.org/wiki/Q-learning

    Q-learning is a model-free reinforcement learning algorithm that teaches an agent to assign values to each action it might take, conditioned on the agent being in a particular state. It does not require a model of the environment (hence "model-free"), and it can handle problems with stochastic transitions and rewards without requiring adaptations.

  4. State–action–reward–state–action - Wikipedia

    en.wikipedia.org/wiki/State–action–reward...

    State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision process policy, used in the reinforcement learning area of machine learning.It was proposed by Rummery and Niranjan in a technical note [1] with the name "Modified Connectionist Q-Learning" (MCQ-L).

  5. Proximal policy optimization - Wikipedia

    en.wikipedia.org/wiki/Proximal_Policy_Optimization

    Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent. Specifically, it is a policy gradient method, often used for deep RL when the policy network is very large. The predecessor to PPO, Trust Region Policy Optimization (TRPO), was published in 2015.

  6. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  7. File:Algorithms printable version.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Algorithms_printable...

    Printer-friendly PDF version of the Algorithms Wikibook. Licensing Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License , Version 1.2 or any later version published by the Free Software Foundation ; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  8. Multi-armed bandit - Wikipedia

    en.wikipedia.org/wiki/Multi-armed_bandit

    A row of slot machines in Las Vegas. In probability theory and machine learning, the multi-armed bandit problem (sometimes called the K-[1] or N-armed bandit problem [2]) is a problem in which a decision maker iteratively selects one of multiple fixed choices (i.e., arms or actions) when the properties of each choice are only partially known at the time of allocation, and may become better ...

  9. AlphaZero - Wikipedia

    en.wikipedia.org/wiki/AlphaZero

    AlphaZero is a generic reinforcement learning algorithm – originally devised for the game of go – that achieved superior results within a few hours, searching a thousand times fewer positions, given no domain knowledge except the rules."