Search results
Results from the WOW.Com Content Network
This list of protein subcellular localisation prediction tools includes software, databases, and web services that are used for protein subcellular localization prediction. Some tools are included that are commonly used to infer location through predicted structural properties, such as signal peptide or transmembrane helices , and these tools ...
Predictive learning is a machine learning (ML) technique where an artificial intelligence model is fed new data to develop an understanding of its environment, capabilities, and limitations. This technique finds application in many areas, including neuroscience , business , robotics , and computer vision .
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).
The van Genuchten–Gupta model is based on an inverted S-curve and applied to the response of crop yield to soil salinity. Examples of the application of the logistic S-curve to the response of crop yield (wheat) to both the soil salinity and depth to water table in the soil are shown in modeling crop response in agriculture.
Shogun is a free, open-source machine learning software library written in C++. It offers numerous algorithms and data structures for machine learning problems. It offers interfaces for Octave, Python, R, Java, Lua, Ruby and C# using SWIG. It is licensed under the terms of the GNU General Public License version 3 or later.
In 1950, Alan Turing proposed a "learning machine" which would parallel the principles of evolution. [40] Computer simulation of evolution started as early as in 1954 with the work of Nils Aall Barricelli, who was using the computer at the Institute for Advanced Study in Princeton, New Jersey. [41] [42] His 1954 publication was not widely noticed.
Conformal prediction (CP) is a machine learning framework for uncertainty quantification that produces statistically valid prediction regions (prediction intervals) for any underlying point predictor (whether statistical, machine, or deep learning) only assuming exchangeability of the data. CP works by computing nonconformity scores on ...