Search results
Results from the WOW.Com Content Network
Chemical cycling describes systems of repeated circulation of chemicals between other compounds, states and materials, and back to their original state, that occurs in space, and on many objects in space including the Earth. Active chemical cycling is known to occur in stars, many planets and natural satellites.
In some cycles there are geological reservoirs where substances can remain or be sequestered for long periods of time. Biogeochemical cycles involve the interaction of biological, geological, and chemical processes. Biological processes include the influence of microorganisms, which are critical drivers of biogeochemical cycling.
In particular, biogeochemistry is the study of biogeochemical cycles, the cycles of chemical elements such as carbon and nitrogen, and their interactions with and incorporation into living things transported through earth scale biological systems in space and time. The field focuses on chemical cycles which are either driven by or influence ...
An overview of the different components included in the field of chemical biology. Chemical biology is a scientific discipline between the fields of chemistry and biology.The discipline involves the application of chemical techniques, analysis, and often small molecules produced through synthetic chemistry, to the study and manipulation of biological systems. [1]
Biological processes are regulated by many means; examples include the control of gene expression, protein modification or interaction with a protein or substrate molecule. Homeostasis: regulation of the internal environment to maintain a constant state; for example, sweating to reduce temperature
Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy.
The phosphorus cycle is the biogeochemical cycle that involves the movement of phosphorus through the lithosphere, hydrosphere, and biosphere.Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based materials do not enter the gaseous phase readily, [1] as the main source of gaseous phosphorus ...
Understanding the silica cycle is important for understanding the functioning of marine food webs, biogeochemical cycles, and the biological pump. Silicic acid is delivered to the ocean through six pathways as illustrated in the diagram above, which all ultimately derive from the weathering of the Earth's crust.