Search results
Results from the WOW.Com Content Network
Torricelli attributes this defect to the air resistance and to the fact that the descending drops collide with ascending drops. Torricelli's argumentation is, as a matter of fact, wrong because the pressure in free jet is the surrounding atmospheric pressure, while the pressure in a communicating vessel is the hydrostatic pressure.
Torricelli's proof demonstrated that the volume of the truncated acute hyperbolic solid and added cylinder is the same as the volume of the red cylinder via application of Cavalieri's indivisibles, mapping cylinders from the former to circles in the latter with the range /, which is both the height of the latter cylinder and the radius of the base in the former.
Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...
Hadwiger's theorem (geometry, measure theory) Helly's theorem (convex sets) Holditch's theorem (plane geometry) John ellipsoid ; Jung's theorem ; Kepler conjecture (discrete geometry) Kirchberger's theorem (discrete geometry) Krein–Milman theorem (mathematical analysis, discrete geometry) Minkowski's theorem (geometry of numbers)
Torricelli's law, a theorem in fluid dynamics; Torricelli's equation, an equation created by Evangelista Torricelli; Torricelli's trumpet or Gabriel's Horn, a geometric figure; Torricelli point or Fermat point, a point such that the total distance from the three vertices of the triangle to the point is the minimum possible
In mathematics, the Torelli theorem, named after Ruggiero Torelli, is a classical result of algebraic geometry over the complex number field, stating that a non-singular projective algebraic curve (compact Riemann surface) C is determined by its Jacobian variety J(C), when the latter is given in the form of a principally polarized abelian variety.
The transition from Cavalieri's indivisibles to Evangelista Torricelli's and John Wallis's infinitesimals was a major advance in the history of calculus. The indivisibles were entities of codimension 1, so that a plane figure was thought as made out of an infinite number of 1-dimensional lines. Meanwhile, infinitesimals were entities of the ...
In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where