enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Twelvefold way - Wikipedia

    en.wikipedia.org/wiki/Twelvefold_way

    Rather, as explained under combinations, the number of n-multicombinations from a set with x elements can be seen to be the same as the number of n-combinations from a set with x + n − 1 elements. This reduces the problem to another one in the twelvefold way, and gives as result

  3. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    As a consequence, an infinite number of multisets exist that contain only elements a and b, but vary in the multiplicities of their elements: The set {a, b} contains only elements a and b, each having multiplicity 1 when {a, b} is seen as a multiset. In the multiset {a, a, b}, the element a has multiplicity 2, and b has multiplicity 1.

  4. Combination - Wikipedia

    en.wikipedia.org/wiki/Combination

    In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.

  5. File:Combinations with repetition; 5 multichoose 3.svg

    en.wikipedia.org/wiki/File:Combinations_with...

    the k-element multisets with elements from an n-element set (k-combinations of n elements with repetitions) and the k-element subsets of an n+k−1-element set (k-combinations of n+k−1 elements without repetitions). (()) = (+) This file shows the bijection between

  6. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    A k-combination of a set S is a k-element subset of S: the elements of a combination are not ordered. Ordering the k-combinations of S in all possible ways produces the k-permutations of S. The number of k-combinations of an n-set, C(n,k), is therefore related to the number of k-permutations of n by: (,) = (,) (,) = _! =!

  7. Stars and bars (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)

    For any pair of positive integers n and k, the number of k-tuples of positive integers whose sum is n is equal to the number of (k − 1)-element subsets of a set with n − 1 elements. For example, if n = 10 and k = 4, the theorem gives the number of solutions to x 1 + x 2 + x 3 + x 4 = 10 (with x 1, x 2, x 3, x 4 > 0) as the binomial coefficient

  8. Shape and form (visual arts) - Wikipedia

    en.wikipedia.org/wiki/Shape_and_form_(visual_arts)

    A form is an artist's way of using elements of art, principles of design, and media. Form, as an element of art, is three-dimensional and encloses space. Like a shape, a form has length and width, but it also has depth. Forms are either geometric or free-form, and can be symmetrical or asymmetrical.

  9. Symbolic method (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Symbolic_method...

    This creates multisets in the unlabelled case and sets in the labelled case (there are no multisets in the labelled case because the labels distinguish multiple instances of the same object from the set being put into different slots). We include the empty set in both the labelled and the unlabelled case.