Search results
Results from the WOW.Com Content Network
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement , distance , velocity , acceleration , speed , and frame of reference to an observer, measuring the change in position of the body relative to that frame with a change in time.
Aryabhata ( ISO: Āryabhaṭa) or Aryabhata I [3] [4] (476–550 CE) [5] [6] was the first of the major mathematician-astronomers from the classical age of Indian mathematics and Indian astronomy. His works include the Āryabhaṭīya (which mentions that in 3600 Kali Yuga , 499 CE, he was 23 years old) [ 7 ] and the Arya- siddhanta .
A tautochrone curve or isochrone curve (from Ancient Greek ταὐτό 'same' ἴσος 'equal' and χρόνος 'time') is the curve for which the time taken by an object sliding without friction in uniform gravity to its lowest point is independent of its starting point on the curve.
Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.
The black curve shows the exact solution. The Euler method can also be numerically unstable, especially for stiff equations, meaning that the numerical solution grows very large for equations where the exact solution does not. This can be illustrated using the linear equation
The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).
The Galilean symmetries can be uniquely written as the composition of a rotation, a translation and a uniform motion of spacetime. [6] Let x represent a point in three-dimensional space, and t a point in one-dimensional time. A general point in spacetime is given by an ordered pair (x, t). A uniform motion, with velocity v, is given by