Search results
Results from the WOW.Com Content Network
Stress–strain curve for brittle materials compared to ductile materials. It is possible to distinguish some common characteristics among the stress–strain curves of various groups of materials and, on this basis, to divide materials into two broad categories; namely, the ductile materials and the brittle materials. [1]: 51
The relation can be plotted to determine the safe cyclic loading of a part; if the coordinate given by the mean stress and the alternating stress lies under the curve given by the relation, then the part will survive. If the coordinate is above the curve, then the part will fail for the given stress parameters. [7]
The applied stress to overcome the resistance of a perfect lattice to shear is the theoretical yield strength, τ max. The stress displacement curve of a plane of atoms varies sinusoidally as stress peaks when an atom is forced over the atom below and then falls as the atom slides into the next lattice point. [18]
On a stress-strain curve, the flow stress can be found anywhere within the plastic regime; more explicitly, a flow stress can be found for any value of strain between and including yield point and excluding fracture (): <.
This is not true since the actual area will decrease while deforming due to elastic and plastic deformation. The curve based on the original cross-section and gauge length is called the engineering stress–strain curve, while the curve based on the instantaneous cross-section area and length is called the true stress–strain curve. Unless ...
Isopachs are curves along which the mean normal stress is constant. Isostatics or stress trajectories [7] are a system of curves which are at each material point tangent to the principal axes of stress - see figure [8] Isoclinics are curves on which the principal axes make a constant angle with a given fixed reference direction. These curves ...
After the stress distribution within the object has been determined with respect to a coordinate system (,), it may be necessary to calculate the components of the stress tensor at a particular material point with respect to a rotated coordinate system (′, ′), i.e., the stresses acting on a plane with a different orientation passing through ...
The Considère construction for prediction of the onset of necking, expressed as the gradient of the (true) stress-strain curve falling to the true stress, for a material conforming to the Ludwik-Hollomon relationship, with the parameter values shown. The condition can also be expressed in terms of the nominal strain: