enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Range query (computer science) - Wikipedia

    en.wikipedia.org/wiki/Range_query_(computer_science)

    Given a function that accepts an array, a range query (,) on an array = [,..,] takes two indices and and returns the result of when applied to the subarray [, …,].For example, for a function that returns the sum of all values in an array, the range query ⁡ (,) returns the sum of all values in the range [,].

  3. Convolution random number generator - Wikipedia

    en.wikipedia.org/wiki/Convolution_random_number...

    In statistics and computer software, a convolution random number generator is a pseudo-random number sampling method that can be used to generate random variates from certain classes of probability distribution. The particular advantage of this type of approach is that it allows advantage to be taken of existing software for generating random ...

  4. Random number generation - Wikipedia

    en.wikipedia.org/wiki/Random_number_generation

    Dice are an example of a mechanical hardware random number generator. When a cubical die is rolled, a random number from 1 to 6 is obtained. Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted better than by random chance is generated.

  5. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    Aperiodic pseudorandom number generators based on infinite words technique. SplitMix 2014 G. L. Steele, D. Lea and C. H. Flood [31] Based upon the final mixing function of MurmurHash3. Included in Java Development Kit 8 and above. Permuted Congruential Generator (PCG) 2014 M. E. O'Neill [32] A modification of LCG. Random Cycle Bit Generator ...

  6. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...

  7. Fisher–Yates shuffle - Wikipedia

    en.wikipedia.org/wiki/Fisher–Yates_shuffle

    However, the need in a Fisher–Yates shuffle to generate random numbers in every range from 0–1 to 0–n almost guarantees that some of these ranges will not evenly divide the natural range of the random number generator. Thus, the remainders will not always be evenly distributed and, worse yet, the bias will be systematically in favor of ...

  8. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    For Monte Carlo simulations, an LCG must use a modulus greater and preferably much greater than the cube of the number of random samples which are required. This means, for example, that a (good) 32-bit LCG can be used to obtain about a thousand random numbers; a 64-bit LCG is good for about 2 21 random samples (a little over two million), etc ...

  9. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    The Lehmer random number generator [1] (named after D. H. Lehmer), sometimes also referred to as the Park–Miller random number generator (after Stephen K. Park and Keith W. Miller), is a type of linear congruential generator (LCG) that operates in multiplicative group of integers modulo n. The general formula is