enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. M/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/G/1_queue

    and F(u) is the service time distribution and λ the Poisson arrival rate of jobs to the queue. Markov chains with generator matrices or block matrices of this form are called M/G/1 type Markov chains, [ 13 ] a term coined by Marcel F. Neuts .

  3. G/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/G/G/1_queue

    The system is described in Kendall's notation where the G denotes a general distribution for both interarrival times and service times and the 1 that the model has a single server. [ 3 ] [ 4 ] Different interarrival and service times are considered to be independent, and sometimes the model is denoted GI/GI/1 to emphasise this.

  4. Hawkes process - Wikipedia

    en.wikipedia.org/wiki/Hawkes_process

    The arrivals in the process whose intensity is () are the "daughters" of the arrival at time . The integral ∫ 0 ∞ ϕ ( t ) d t {\displaystyle \int _{0}^{\infty }\phi (t)\,dt} is the average number of daughters of each arrival and is called the branching ratio .

  5. G/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/G/M/1_queue

    It is an extension of an M/M/1 queue, where this renewal process must specifically be a Poisson process (so that interarrival times have exponential distribution). Models of this type can be solved by considering one of two M/G/1 queue dual systems, one proposed by Ramaswami and one by Bright.

  6. Lindley equation - Wikipedia

    en.wikipedia.org/wiki/Lindley_equation

    Lindley's integral equation is a relationship satisfied by the stationary waiting time distribution F(x) in a G/G/1 queue. = ()Where K(x) is the distribution function of the random variable denoting the difference between the (k - 1)th customer's arrival and the inter-arrival time between (k - 1)th and kth customers.

  7. M/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/M/1_queue

    Service times have an exponential distribution with rate parameter μ in the M/M/1 queue, where 1/μ is the mean service time. All arrival times and services times are (usually) assumed to be independent of one another. [2] A single server serves customers one at a time from the front of the queue, according to a first-come, first-served ...

  8. Little's law - Wikipedia

    en.wikipedia.org/wiki/Little's_law

    In mathematical queueing theory, Little's law (also result, theorem, lemma, or formula [1] [2]) is a theorem by John Little which states that the long-term average number L of customers in a stationary system is equal to the long-term average effective arrival rate λ multiplied by the average time W that a customer spends in the system.

  9. Kendall's notation - Wikipedia

    en.wikipedia.org/wiki/Kendall's_notation

    A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one (1).