Search results
Results from the WOW.Com Content Network
AERMOD – An atmospheric dispersion model based on atmospheric boundary layer turbulence structure and scaling concepts, including treatment of multiple ground-level and elevated point, area and volume sources. It handles flat or complex, rural or urban terrain and includes algorithms for building effects and plume penetration of inversions aloft.
Many atmospheric dispersion models are referred to as boundary layer models because they mainly model air pollutant dispersion within the ABL. To avoid confusion, models referred to as mesoscale models have dispersion modeling capabilities that extend horizontally up to a few hundred kilometres. It does not mean that they model dispersion in ...
In atmospheric science, an atmospheric model is a mathematical model constructed around the full set of primitive, dynamical equations which govern atmospheric motions. It can supplement these equations with parameterizations for turbulent diffusion, radiation , moist processes ( clouds and precipitation ), heat exchange , soil , vegetation ...
Atmospheric dispersion modeling is the mathematical simulation of how air pollutants disperse in the ambient atmosphere. Pages in category "Atmospheric dispersion modeling" The following 69 pages are in this category, out of 69 total.
The basis for most of those models was the Complete Equation For Gaussian Dispersion Modeling Of Continuous, Buoyant Air Pollution Plumes The Gaussian air pollutant dispersion equation requires the input of H which is the pollutant plume's centerline height above ground level—and H is the sum of H s (the actual physical height of the ...
In meteorology, the planetary boundary layer (PBL), also known as the atmospheric boundary layer (ABL) or peplosphere, is the lowest part of the atmosphere and its behaviour is directly influenced by its contact with a planetary surface. [1] On Earth it usually responds to changes in surface radiative forcing in an hour or less.
The acronym, NAME, originally stood for the Nuclear Accident ModEl. [5] The Met Office has revised and upgraded the model over the years and it is now used as a general purpose dispersion model. The current version is known as the NAME III (Numerical Atmospheric-dispersion Modelling Environment) model.
The MEMO model (version 6.2) is a Eulerian non-hydrostatic prognostic mesoscale model for wind-flow simulation. It was developed by the Aristotle University of Thessaloniki in collaboration with the Universität Karlsruhe. The MEMO Model together with the photochemical dispersion model MARS are the two core models of the European zooming model ...