Search results
Results from the WOW.Com Content Network
The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.
Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.
The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that the degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.
It is possible to do a calculation of likelihood ratios for tests with continuous values or more than two outcomes which is similar to the calculation for dichotomous outcomes. For this purpose, a separate likelihood ratio is calculated for every level of test result and is called interval or stratum specific likelihood ratios. [4]
To conduct chi-square analyses, one needs to break the model down into a 2 × 2 or 2 × 1 contingency table. [ 2 ] For example, if one is examining the relationship among four variables, and the model of best fit contained one of the three-way interactions, one would examine its simple two-way interactions at different levels of the third variable.
The commonly used chi-squared tests for goodness of fit to a distribution and for independence in contingency tables are in fact approximations of the log-likelihood ratio on which the G-tests are based. [4] The general formula for Pearson's chi-squared test statistic is
^ = the maximized value of the likelihood function of the model , i.e. ^ = (^,), where {^} are the parameter values that maximize the likelihood function and is the observed data; n {\displaystyle n} = the number of data points in x {\displaystyle x} , the number of observations , or equivalently, the sample size;
If M-score is less than -1.78, the company is unlikely to be a manipulator. For example, an M-score value of -2.50 suggests a low likelihood of manipulation. If M-score is greater than −1.78, the company is likely to be a manipulator. For example, an M-score value of -1.50 suggests a high likelihood of manipulation.