Search results
Results from the WOW.Com Content Network
Computers and Intractability: A Guide to the Theory of NP-Completeness. Series of Books in the Mathematical Sciences (1st ed.). New York: W. H. Freeman and Company. ISBN 9780716710455. MR 0519066. OCLC 247570676.. This book is a classic, developing the theory, then cataloguing many NP-Complete problems. Cook, S.A. (1971). "The complexity of ...
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).
Download as PDF; Printable version; In other projects Wikidata item; ... Pages in category "Unsolved problems in graph theory" The following 32 pages are in this ...
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
The problems of finding a Hamiltonian path and a Hamiltonian cycle can be related as follows: In one direction, the Hamiltonian path problem for graph G can be related to the Hamiltonian cycle problem in a graph H obtained from G by adding a new universal vertex x, connecting x to all vertices of G. Thus, finding a Hamiltonian path cannot be ...
Pages in category "Computational problems in graph theory" The following 75 pages are in this category, out of 75 total. This list may not reflect recent changes .
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
There exist fixed-parameter tractable algorithms to solve the metric dimension problem for the parameters "vertex cover", [13] "max leaf number", [14] and "modular width". [9] Graphs with bounded cyclomatic number, vertex cover number or max leaf number all have bounded treewidth, however it is an open problem to determine the complexity of the ...