Search results
Results from the WOW.Com Content Network
One must multiply the leftmost digit of the original number by 3, add the next digit, take the remainder when divided by 7, and continue from the beginning: multiply by 3, add the next digit, etc. For example, the number 371: 3×3 + 7 = 16 remainder 2, and 2×3 + 1 = 7. This method can be used to find the remainder of division by 7.
A multiplication by a negative number can be seen as a change of direction of the vector of magnitude equal to the absolute value of the product of the factors. When multiplying numbers, the magnitude of the product is always just the product of the two magnitudes. The sign of the product is determined by the following rules:
Histogram of total stopping times for the numbers 1 to 10 9. Total stopping time is on the x axis, frequency on the y axis. Iteration time for inputs of 2 to 10 7. Total stopping time of numbers up to 250, 1000, 4000, 20000, 100000, 500000. Consider the following operation on an arbitrary positive integer: If the number is even, divide it by two.
The resultant sign from multiplication when both are positive or one is positive and the other is negative can be illustrated so long as one uses the positive factor to give the cardinal value to the implied repeated addition or subtraction operation, or in other words, -5 x 2 = -5 + -5 = -10, or 10 ÷ -2 = 10 - 2 - 2 - 2 - 2 - 2 = 0 (the ...
Every sequence of digits, in any base, is the sequence of initial digits of some factorial number in that base. [ 60 ] Another result on divisibility of factorials, Wilson's theorem , states that ( n − 1 ) ! + 1 {\displaystyle (n-1)!+1} is divisible by n {\displaystyle n} if and only if n {\displaystyle n} is a prime number . [ 52 ]
Digit sums and digital roots can be used for quick divisibility tests: a natural number is divisible by 3 or 9 if and only if its digit sum (or digital root) is divisible by 3 or 9, respectively. For divisibility by 9, this test is called the rule of nines and is the basis of the casting out nines technique for checking calculations.
Multiplying by a number is the same as dividing by its reciprocal and vice versa. For example, multiplication by 4/5 (or 0.8) will give the same result as division by 5/4 (or 1.25). Therefore, multiplication by a number followed by multiplication by its reciprocal yields the original number (since the product of the number and its reciprocal is 1).
The sum of two numbers is unique; there is only one correct answer for a sums. [8] When the sum of a pair of digits results in a two-digit number, the "tens" digit is referred to as the "carry digit". [9] In elementary arithmetic, students typically learn to add whole numbers and may also learn about topics such as negative numbers and fractions.