Search results
Results from the WOW.Com Content Network
X-ray reflectivity (sometimes known as X-ray specular reflectivity, X-ray reflectometry, or XRR) is a surface-sensitive analytical technique used in chemistry, physics, and materials science to characterize surfaces, thin films and multilayers.
English: This is a simple diagram illustrating how X-ray magnetic circular dichroism (XMCD) works. XMCD is an experimental physics technique used at synchrotrons for studying magnetic materials. XMCD is an experimental physics technique used at synchrotrons for studying magnetic materials.
X-ray reflectivity is an analytical technique for determining thickness, roughness, and density of single layer and multilayer thin films. Wide-angle X-ray scattering (WAXS), a technique concentrating on scattering angles 2θ larger than 5°. Spectrum of various inelastic scattering processes that can be probed with inelastic X-ray scattering ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The following other wikis use this file: Usage on bn.wikipedia.org আলোকরশ্মি; Usage on bn.wikibooks.org উইকিশৈশব:ইংরেজি বর্ণমালায় বিজ্ঞান/R
Diagram of Lambertian diffuse reflection. The black arrow shows incident radiance, and the red arrows show the reflected radiant intensity in each direction. When viewed from various angles, the reflected radiant intensity and the apparent area of the surface both vary with the cosine of the viewing angle, so the reflected radiance (intensity per unit area) is the same from all viewing angles.
The Ewald sphere is a geometric construction used in electron, neutron, and x-ray diffraction which shows the relationship between: the wavevector of the incident and diffracted beams, the diffraction angle for a given reflection, the reciprocal lattice of the crystal. It was conceived by Paul Peter Ewald, a German physicist and ...
X-ray reflectometry: is a surface-sensitive analytical technique used in chemistry, physics, and materials science to characterize surfaces, thin films and multilayers. Propagation of electric pulses and reflection at discontinuities in cables is used in time domain reflectometry (TDR) to detect and localize defects in electric wiring. [2] [3]