Search results
Results from the WOW.Com Content Network
The most famous example is the hyperchromicity of DNA that occurs when the DNA duplex is denatured. [1] The UV absorption is increased when the two single DNA strands are being separated, either by heat or by addition of denaturant or by increasing the pH level. The opposite, a decrease of absorbance is called hypochromicity.
The process of DNA denaturation can be used to analyze some aspects of DNA. Because cytosine / guanine base-pairing is generally stronger than adenine / thymine base-pairing, the amount of cytosine and guanine in a genome is called its GC-content and can be estimated by measuring the temperature at which the genomic DNA melts. [ 2 ]
DNA polymerase, the main enzyme to catalyze the polymerization of free deoxyribonucleotides into a newly forming DNA strand, plays a significant role in the occurrence of this mutation. When DNA polymerase encounters a direct repeat, it can undergo a replication slippage. [4] Strand slippage may also occur during the DNA synthesis step of DNA ...
DNA denaturation occurs when hydrogen bonds between base pairs are disturbed. The non-covalent interactions between antiparallel strands in DNA can be broken in order to "open" the double helix when biologically important mechanisms such as DNA replication, transcription, DNA repair or protein binding are set to occur. [ 19 ]
The polymerase chain reaction is the most widely used method for in vitro DNA amplification for purposes of molecular biology and biomedical research. [1] This process involves the separation of the double-stranded DNA in high heat into single strands (the denaturation step, typically achieved at 95–97 °C), annealing of the primers to the single stranded DNA (the annealing step) and copying ...
Epigenetic alterations can accompany DNA repair of oxidative damage or double-strand breaks. In human cells, oxidative DNA damage occurs about 10,000 times a day and DNA double-strand breaks occur about 10 to 50 times a cell cycle in somatic replicating cells (see DNA damage (naturally occurring)). The selective advantage of DNA repair is to ...
These cycles normally consist of three stages: the first, at around 95 °C, allows the separation of the nucleic acid's double chain; the second, at a temperature of around 50–60 °C, allows the binding of the primers with the DNA template; [7] the third, at between 68 and 72 °C, facilitates the polymerization carried out by the DNA polymerase.
DNA polymerase's ability to slide along the DNA template allows increased processivity. There is a dramatic increase in processivity at the replication fork. This increase is facilitated by the DNA polymerase's association with proteins known as the sliding DNA clamp. The clamps are multiple protein subunits associated in the shape of a ring.