Search results
Results from the WOW.Com Content Network
Characterization of transport properties requires fabricating a device and measuring its current-voltage characteristics. Devices for transport studies are typically fabricated by thin film deposition or break junctions. The dominant transport mechanism in a measured device can be determined by differential conductance analysis.
The Monte Carlo method for electron transport is a semiclassical Monte Carlo (MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics.
The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material,; v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and
where D is the diffusion coefficient for the electron in the considered medium, n is the number of electrons per unit volume (i.e. number density), q is the magnitude of charge of an electron, μ is electron mobility in the medium, and E = −dΦ/dx (Φ potential difference) is the electric field as the potential gradient of the electric potential.
An electric field (sometimes called E-field [1]) is a physical field that surrounds electrically charged particles. In classical electromagnetism, the electric field of a single charge (or group of charges) describes their capacity to exert attractive or repulsive forces on another charged object.
In solid-state physics, the Poole–Frenkel effect (also known as Frenkel–Poole emission [1]) is a model describing the mechanism of trap-assisted electron transport in an electrical insulator. It is named after Yakov Frenkel , who published on it in 1938, [ 2 ] extending the theory previously developed by H. H. Poole.
In a conducting medium, an electric field can exert force on these free particles, causing a net motion of the particles through the medium; this is what constitutes an electric current. [3] The electron and the proton are the elementary charge carriers, each carrying one elementary charge (e), of the same magnitude and opposite sign.
The electrostatic field does not contribute to the net emf around a circuit because the electrostatic portion of the electric field is conservative (i.e., the work done against the field around a closed path is zero, see Kirchhoff's voltage law, which is valid, as long as the circuit elements remain at rest and radiation is ignored [22]). That ...