Search results
Results from the WOW.Com Content Network
Abstract syntax trees are data structures widely used in compilers to represent the structure of program code. An AST is usually the result of the syntax analysis phase of a compiler. It often serves as an intermediate representation of the program through several stages that the compiler requires, and has a strong impact on the final output of ...
The simple Sethi–Ullman algorithm works as follows (for a load/store architecture): . Traverse the abstract syntax tree in pre- or postorder . For every leaf node, if it is a non-constant left-child, assign a 1 (i.e. 1 register is needed to hold the variable/field/etc.), otherwise assign a 0 (it is a non-constant right child or constant leaf node (RHS of an operation – literals, values)).
A compiler's internal representation of a program will typically be specified by an abstract syntax in terms of categories such as "statement", "expression" and "identifier". This is independent of the source syntax ( concrete syntax ) of the language being compiled (though it will often be very similar).
An abstract syntax is abstract because it is represented by mathematical objects that have certain structure by their very nature. For instance, in first-order abstract syntax (FOAS) trees, as commonly used in compilers, the tree structure implies the subexpression relation, meaning that no parentheses are required to disambiguate programs (as they are, in the concrete syntax).
This hierarchy can also be seen as a tree: This tree is called a parse tree or "concrete syntax tree" of the string, by contrast with the abstract syntax tree. In this case the presented leftmost and the rightmost derivations define the same parse tree; however, there is another rightmost derivation of the same string S
(For more information on compiler design, see Compiler.) The input to the code generator typically consists of a parse tree or an abstract syntax tree. [1] The tree is converted into a linear sequence of instructions, usually in an intermediate language such as three-address code. Further stages of compilation may or may not be referred to as ...
The tree building operators were used in the grammar rules directly transforming the input into an abstract syntax tree. Unparse rules are also test functions that matched tree patterns. Unparse rules are called from a grammar rule when an abstract syntax tree is to be transformed into output code.
The parsing stage itself can be divided into two parts: the parse tree, or "concrete syntax tree", which is determined by the grammar, but is generally far too detailed for practical use, and the abstract syntax tree (AST), which simplifies this into a usable form. The AST and contextual analysis steps can be considered a form of semantic ...