Search results
Results from the WOW.Com Content Network
Polarizability is responsible for a material's dielectric constant and, at high (optical) frequencies, its refractive index. The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1]
The Lorentz–Lorenz equation is similar to the Clausius–Mossotti relation, except that it relates the refractive index (rather than the dielectric constant) of a substance to its polarizability. The Lorentz–Lorenz equation is named after the Danish mathematician and scientist Ludvig Lorenz , who published it in 1869, and the Dutch ...
In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε , is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy ...
where μ is the electric dipole moment of the effectively polarized water molecule (2.35 D for the SPC/E model), μ 0 is the dipole moment of an isolated water molecule (1.85 D from experiment), and α i is an isotropic polarizability constant, with a value of 1.608 × 10 −40 F·m 2. Since the charges in the model are constant, this ...
A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field. Permittivity is a material's property that affects the Coulomb force between two point charges in the material. Relative permittivity is the factor by which the electric field ...
In electricity (electromagnetism), the electric susceptibility (; Latin: susceptibilis "receptive") is a dimensionless proportionality constant that indicates the degree of polarization of a dielectric material in response to an applied electric field. The greater the electric susceptibility, the greater the ability of a material to polarize in ...
In the first instance, shaped electrostatic fields (ESF's) create hydrostatic pressure (HSP, or motion) in dielectric media. When such media are fluids, a flow is produced. If the dielectric is a vacuum or a solid, no flow is produced. Such flow can be directed against the electrodes, generally to move the electrodes.
ε 0, the permittivity of free space, or the electric constant; and; ε r, the relative permittivity of the dielectric. In the equation above, the use of ε accounts for the polarization (if any) of the dielectric material. The scalar value of displacement current may also be expressed in terms of electric flux: