Search results
Results from the WOW.Com Content Network
DNA polymerase III synthesizes base pairs at a rate of around 1000 nucleotides per second. [3] DNA Pol III activity begins after strand separation at the origin of replication. Because DNA synthesis cannot start de novo, an RNA primer, complementary to part of the single-stranded DNA, is synthesized by primase (an RNA polymerase): [citation ...
Three more DNA polymerases have been found in E. coli, including DNA polymerase III (discovered in the 1970s) and DNA polymerases IV and V (discovered in 1999). [9] From 1983 on, DNA polymerases have been used in the polymerase chain reaction (PCR), and from 1988 thermostable DNA polymerases were used instead, as they do not need to be added in ...
However, these mutagenic effects are inhibited when the phage's DNA synthesis is catalyzed by the tsCB120 antimutator polymerase, or another antimutator polymerase, tsCB87. [9] These findings indicate that the level of induction of mutations by DNA damage can be strongly influenced by the gene 43 DNA polymerase proofreading function.
In molecular biology, the δ (delta) subunit of DNA polymerase III is encoded by the holA gene in E. coli and other bacteria. Along with the γ, δ', χ, and ψ subunits that make up the core polymerase, and the β accessory proteins, the δ subunit is responsible for the high speed and processivity of polIII. [1] [2]
DnaE, the gene product of dnaE, is the catalytic α subunit of DNA polymerase III, acting as a DNA polymerase. This enzyme is only found in prokaryotes. [1] References
DNA mismatch repair (MMR) is a system for recognizing and repairing erroneous insertion, deletion, and mis-incorporation of bases that can arise during DNA replication and recombination, as well as repairing some forms of DNA damage.
dnaQ is the gene encoding the ε subunit of DNA polymerase III in Escherichia coli. [1] The ε subunit is one of three core proteins in the DNA polymerase complex. It functions as a 3’→5’ DNA directed proofreading exonuclease that removes incorrectly incorporated bases during replication. [2] dnaQ may also be referred to as mutD. [3]
Required for initiation and elongation stages of DNA replication. Implicated in chromatin binding of Cdc45 and DNA polymerase α. Also required for stability of DNA polymerase α catalytic subunit in the budding yeast S. cerevisiae. Mrc1: Couple leading-strand synthesis with the CMG complex helicase activity. Metazoan homolog is known as Claspin.