enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =.

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    This can be seen in the following tables, the left of which shows Newton's method applied to the above f(x) = x + x 4/3 and the right of which shows Newton's method applied to f(x) = x + x 2. The quadratic convergence in iteration shown on the right is illustrated by the orders of magnitude in the distance from the iterate to the true root (0,1 ...

  4. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    It has similarities with Quasi-Newton methods. Conditional gradient method (Frank–Wolfe) for approximate minimization of specially structured problems with linear constraints, especially with traffic networks. For general unconstrained problems, this method reduces to the gradient method, which is regarded as obsolete (for almost all problems).

  5. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    [7]: chpt.2 Many optimization problems can be equivalently formulated in this standard form. For example, the problem of maximizing a concave function can be re-formulated equivalently as the problem of minimizing the convex function . The problem of maximizing a concave function over a convex set is commonly called a convex optimization problem.

  6. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    These minimization problems arise especially in least squares curve fitting. The LMA interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient descent. The LMA is more robust than the GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum. For well-behaved functions and ...

  7. Subgradient method - Wikipedia

    en.wikipedia.org/wiki/Subgradient_method

    However, Newton's method fails to converge on problems that have non-differentiable kinks. In recent years, some interior-point methods have been suggested for convex minimization problems, but subgradient projection methods and related bundle methods of descent remain competitive. For convex minimization problems with very large number of ...

  8. Wolfe conditions - Wikipedia

    en.wikipedia.org/wiki/Wolfe_conditions

    The principal reason for imposing the Wolfe conditions in an optimization algorithm where + = + is to ensure convergence of the gradient to zero. In particular, if the cosine of the angle between and the gradient, ⁡ = ‖ ‖ ‖ ‖ is bounded away from zero and the i) and ii) conditions hold, then ().

  9. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Newton's method assumes the function f to have a continuous derivative. Newton's method may not converge if started too far away from a root. However, when it does converge, it is faster than the bisection method; its order of convergence is usually quadratic whereas the bisection method's is linear. Newton's method is also important because it ...