enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    Recursive drawing of a SierpiƄski Triangle through turtle graphics. In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. [1] [2] Recursion solves such recursive problems by using functions that call themselves from within their own code ...

  3. Master theorem (analysis of algorithms) - Wikipedia

    en.wikipedia.org/wiki/Master_theorem_(analysis...

    The leaves of the tree are the base cases of the recursion, the subproblems (of size less than k) that do not recurse. The above example would have a child nodes at each non-leaf node. Each node does an amount of work that corresponds to the size of the subproblem n passed to that instance of the recursive call and given by (). The total amount ...

  4. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...

  5. Computability theory - Wikipedia

    en.wikipedia.org/wiki/Computability_theory

    Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees.

  6. Dancing Links - Wikipedia

    en.wikipedia.org/wiki/Dancing_Links

    Algorithm X is a recursive, nondeterministic, depth-first, backtracking algorithm that finds all solutions to the exact cover problem. Some of the better-known exact cover problems include tiling , the n queens problem , and Sudoku .

  7. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.

  8. Knuth's Algorithm X - Wikipedia

    en.wikipedia.org/wiki/Knuth's_Algorithm_X

    It is a straightforward recursive, nondeterministic, depth-first, backtracking algorithm used by Donald Knuth to demonstrate an efficient implementation called DLX, which uses the dancing links technique. [1] [2]

  9. McCarthy 91 function - Wikipedia

    en.wikipedia.org/wiki/McCarthy_91_function

    The 91 function was chosen for being nested-recursive (contrasted with single recursion, such as defining () by means of ()). The example was popularized by Manna's book, Mathematical Theory of Computation (1974). As the field of Formal Methods advanced, this example appeared repeatedly in the research literature.