Search results
Results from the WOW.Com Content Network
Recursive drawing of a SierpiĆski Triangle through turtle graphics. In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. [1] [2] Recursion solves such recursive problems by using functions that call themselves from within their own code ...
The leaves of the tree are the base cases of the recursion, the subproblems (of size less than k) that do not recurse. The above example would have a child nodes at each non-leaf node. Each node does an amount of work that corresponds to the size of the subproblem n passed to that instance of the recursive call and given by (). The total amount ...
A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees.
Algorithm X is a recursive, nondeterministic, depth-first, backtracking algorithm that finds all solutions to the exact cover problem. Some of the better-known exact cover problems include tiling , the n queens problem , and Sudoku .
Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm.
It is a straightforward recursive, nondeterministic, depth-first, backtracking algorithm used by Donald Knuth to demonstrate an efficient implementation called DLX, which uses the dancing links technique. [1] [2]
The 91 function was chosen for being nested-recursive (contrasted with single recursion, such as defining () by means of ()). The example was popularized by Manna's book, Mathematical Theory of Computation (1974). As the field of Formal Methods advanced, this example appeared repeatedly in the research literature.