Search results
Results from the WOW.Com Content Network
Laser science or laser physics is a branch of optics that describes the theory and practice of lasers. [ 1 ] Laser science is principally concerned with quantum electronics , laser construction , optical cavity design, the physics of producing a population inversion in laser media , and the temporal evolution of the light field in the laser.
Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser material (see the figure description for details).
Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is: Class 1 is inherently safe, usually because the light is contained in an enclosure, for example in CD players; Class 2 is safe during normal use; the blink reflex of the eye will prevent damage. Usually up to 1 mW power, for example, laser pointers.
The RP Photonics Encyclopedia (formerly Encyclopedia of Laser Physics and Technology) is an encyclopedia of optics and optoelectronics, laser technology, optical fibers, nonlinear optics, optical communications, imaging science, optical metrology, spectroscopy and ultrashort pulse physics. [1] It is available online as a free resource.
Laser rods (from left to right): Ruby, alexandrite, Er:YAG, Nd:YAG. A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. [1] Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers, called ...
Ruby laser pistol constructed by Stanford Univ. physics professor in 1964 to demonstrate the laser to his classes. The plastic body recycled from a toy raygun contained a ruby rod between two flashtubes (right). The pulse of coherent red light was strong enough to pop blue balloons (shown at left) but not red balloons which reflected the light.
Light is generated in a semiconductor laser by radiative recombination of electrons and holes. In order to generate more light by stimulated emission than is lost by absorption, the system's population density has to be inverted, see the article on lasers. A laser is, thus, always a high carrier density system that entails many-body interactions.
The laser diode chip removed and placed on the eye of a needle for scale A laser diode with the case cut away. The laser diode chip is the small black chip at the front; a photodiode at the back is used to control output power. SEM (scanning electron microscope) image of a commercial laser diode with its case and window cut away. The anode ...