Search results
Results from the WOW.Com Content Network
NumPy addresses the slowness problem partly by providing multidimensional arrays and functions and operators that operate efficiently on arrays; using these requires rewriting some code, mostly inner loops, using NumPy. Using NumPy in Python gives functionality comparable to MATLAB since they are both interpreted, [18] and they both allow the ...
The below code demonstrates the pmap function's parallelization for matrix multiplication. # import pmap and random from JAX; import JAX NumPy from jax import pmap , random import jax.numpy as jnp # generate 2 random matrices of dimensions 5000 x 6000, one per device random_keys = random . split ( random .
NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.
Python [24] [25] with well-known scientific computing packages: NumPy, SymPy and SciPy. [26] [27] [28] R is a widely used system with a focus on data manipulation and statistics which implements the S language. [29] Many add-on packages are available (free software, GNU GPL license). SAS, [30] a system of software products for statistics.
Array programming primitives concisely express broad ideas about data manipulation. The level of concision can be dramatic in certain cases: it is not uncommon [example needed] to find array programming language one-liners that require several pages of object-oriented code.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
The matrix vectorization operation can be written in terms of a linear sum. Let X be an m × n matrix that we want to vectorize, and let e i be the i -th canonical basis vector for the n -dimensional space, that is e i = [ 0 , … , 0 , 1 , 0 , … , 0 ] T {\textstyle \mathbf {e} _{i}=\left[0,\dots ,0,1,0,\dots ,0\right]^{\mathrm {T} }} .