enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    A binary operation for such subsets can be defined by S • T = { s • t : s ∈ S, t ∈ T}. This turns P(M) into a monoid with identity element {e}. In the same way the power set of a group G is a monoid under the product of group subsets. Let S be a set. The set of all functions S → S forms a monoid under function composition.

  3. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    A universe set is an absorbing element of binary union . The empty set ∅ {\displaystyle \varnothing } is an absorbing element of binary intersection ∩ {\displaystyle \cap } and binary Cartesian product × , {\displaystyle \times ,} and it is also a left absorbing element of set subtraction ∖ : {\displaystyle \,\setminus :}

  4. Restriction (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Restriction_(mathematics)

    More generally, the restriction (or domain restriction or left-restriction) of a binary relation between and may be defined as a relation having domain , codomain and graph ( ) = {(,) ():}. Similarly, one can define a right-restriction or range restriction R B . {\displaystyle R\triangleright B.}

  5. Relation algebra - Wikipedia

    en.wikipedia.org/wiki/Relation_algebra

    A relation algebra (L, ∧, ∨, −, 0, 1, •, I, ˘) is an algebraic structure equipped with the Boolean operations of conjunction x∧y, disjunction x∨y, and negation x −, the Boolean constants 0 and 1, the relational operations of composition x•y and converse x˘, and the relational constant I, such that these operations and constants satisfy certain equations constituting an ...

  6. Presentation of a group - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_group

    Informally, G has the above presentation if it is the "freest group" generated by S subject only to the relations R. Formally, the group G is said to have the above presentation if it is isomorphic to the quotient of a free group on S by the normal subgroup generated by the relations R. As a simple example, the cyclic group of order n has the ...

  7. Directed set - Wikipedia

    en.wikipedia.org/wiki/Directed_set

    Here the order relation on the elements of is inherited from ; for this reason, reflexivity and transitivity need not be required explicitly. A directed subset of a poset is not required to be downward closed; a subset of a poset is directed if and only if its downward closure is an ideal. While the definition of a directed set is for an ...

  8. Preorder - Wikipedia

    en.wikipedia.org/wiki/Preorder

    Every binary relation on a set can be extended to a preorder on by taking the transitive closure and reflexive closure, + =. The transitive closure indicates path connection in R : x R + y {\displaystyle R:xR^{+}y} if and only if there is an R {\displaystyle R} - path from x {\displaystyle x} to y . {\displaystyle y.}

  9. Total order - Wikipedia

    en.wikipedia.org/wiki/Total_order

    A binary relation that is antisymmetric, transitive, and reflexive (but not necessarily total) is a partial order. A group with a compatible total order is a totally ordered group. There are only a few nontrivial structures that are (interdefinable as) reducts of a total order. Forgetting the orientation results in a betweenness relation.