Search results
Results from the WOW.Com Content Network
Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation. The method is to reduce a partial differential equation (PDE) to a family of ordinary differential equations (ODE) along which the solution can be integrated from some initial data ...
Although it is easily visualized on the graph (which is a curve), the notion of critical point of a function must not be confused with the notion of critical point, in some direction, of a curve (see below for a detailed definition). If g(x, y) is a differentiable function of two variables, then g(x,y) = 0 is the implicit equation of a curve.
A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]
An algebraic curve in the Euclidean plane is the set of the points whose coordinates are the solutions of a bivariate polynomial equation p(x, y) = 0.This equation is often called the implicit equation of the curve, in contrast to the curves that are the graph of a function defining explicitly y as a function of x.
If the curve is required to be in a particular sub-category of n-th degree polynomial equations, then fewer than n(n + 3) / 2 points may be necessary and sufficient to determine a unique curve. For example, three (non-collinear) points determine a circle : the generic circle is given by the equation ( x − a ) 2 + ( y − b ) 2 = r 2 ...
The Chebyshev nodes of the second kind are also referred to as Chebyshev-Lobatto points or Chebyshev extreme points. [3] Note that the Chebyshev nodes of the second kind include the end points of the interval while the Chebyshev nodes of the first kind do not include the end points.
A Bézier curve is defined by a set of control points P 0 through P n, where n is called the order of the curve (n = 1 for linear, 2 for quadratic, 3 for cubic, etc.). The first and last control points are always the endpoints of the curve; however, the intermediate control points generally do not lie on the curve.
For the use in differential geometry, see Cesàro equation. For the radius of curvature of the Earth (approximated by an oblate ellipsoid); see also: arc measurement; Radius of curvature is also used in a three part equation for bending of beams. Radius of curvature (optics) Thin films technologies; Printed electronics; Minimum railway curve ...