Search results
Results from the WOW.Com Content Network
The Golgi apparatus (/ ˈ ɡ ɒ l dʒ i /), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic cells. [1] Part of the endomembrane system in the cytoplasm , it packages proteins into membrane-bound vesicles inside the cell before the vesicles are sent to their destination.
The cytosol is the site of multiple cell processes. Examples of these processes include signal transduction from the cell membrane to sites within the cell, such as the cell nucleus, [57] or organelles. [58] This compartment is also the site of many of the processes of cytokinesis, after the breakdown of the nuclear membrane in mitosis. [59]
Golgi apparatus: The primary function of the Golgi apparatus is to process and package the macromolecules such as proteins and lipids that are synthesized by the cell. Lysosomes and peroxisomes: Lysosomes contain digestive enzymes (acid hydrolases). They digest excess or worn-out organelles, food particles, and engulfed viruses or bacteria.
Golgi's method is a silver staining technique that is used to visualize nervous tissue under light microscopy. The method was discovered by Camillo Golgi , an Italian physician and scientist , who published the first picture made with the technique in 1873. [ 1 ]
In 1903, Nikolai K. Koltsov proposed that the shape of cells was determined by a network of tubules that he termed the cytoskeleton. The concept of a protein mosaic that dynamically coordinated cytoplasmic biochemistry was proposed by Rudolph Peters in 1929 [12] while the term (cytosquelette, in French) was first introduced by French embryologist Paul Wintrebert in 1931.
The name organelle comes from the idea that these structures are parts of cells, as organs are to the body, hence organelle, the suffix -elle being a diminutive. Organelles are either separately enclosed within their own lipid bilayers (also called membrane-bounded organelles) or are spatially distinct functional units without a surrounding ...
An example of such function is cell signalling, a process which is dependent on the manner in which signaling molecules are allowed to diffuse across the cell. [9] While small signaling molecules like calcium ions are able to diffuse with ease, larger molecules and subcellular structures often require aid in moving through the cytoplasm. [10]
Compared to Golgi type I neurons, Golgi type II neurons have a greater nucleus to cytoplasm ratio (N/C). [27] Compared to Golgi type I neurons, these neurons' dendrites exhibit significantly less tufted dendrites. Two in the ten main dendrites protruded from the cell body and produced a small number of branches. [27]