Search results
Results from the WOW.Com Content Network
Convection (or convective heat transfer) is the transfer of heat from one place to another due to the movement of fluid. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of conduction (heat diffusion) and advection (heat transfer by bulk fluid flow ).
The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...
Discharge regime, [1] flow regime, or hydrological regime (commonly termed river regime, but that term is also used for other measurements) is the long-term pattern of annual changes to a stream's discharge at a particular point. Hence, it shows how the discharge of a stream at that point is expected to change over the year. [2]
As the heat flow is increased, above a critical value of the Rayleigh number, the system undergoes a bifurcation from the stable conducting state to the convecting state, where bulk motion of the fluid due to heat begins. If fluid parameters other than density do not depend significantly on temperature, the flow profile is symmetric, with the ...
When the flow velocity is below 0.1 m/s, the biological community in a river is similar to that in a lake. Usually, in rivers, flow velocity between 0.1–1 m/s is most suitable for major-stream fish species. High flow velocity and turbulence are cues for timing migration and spawning of some fish. Asian carp lay floating eggs when they sense ...
The strength of the water cycle and its changes over time are of considerable interest, especially as the climate changes. [5] The hydrological cycle is a system whereby the evaporation of moisture in one place leads to precipitation (rain or snow) in another place. For example, evaporation always exceeds precipitation over the oceans.
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...
The theory is based on the concept of dynamic equilibrium in which streamforms balance between physical parameters, such as width, depth, velocity, and sediment load, also taking into account biological factors. [2] It offers an introduction to map out biological communities and also an explanation for their sequence in individual sections of ...