Ad
related to: dodecahedron vertices and edges definition geometry worksheet pdf
Search results
Results from the WOW.Com Content Network
In geometry, a dodecahedron (from Ancient Greek δωδεκάεδρον (dōdekáedron); from δώδεκα (dṓdeka) 'twelve' and ἕδρα (hédra) 'base, seat, face') or duodecahedron [1] is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid.
The regular dodecahedron is a polyhedron with twelve pentagonal faces, thirty edges, and twenty vertices. [1] It is one of the Platonic solids, a set of polyhedrons in which the faces are regular polygons that are congruent and the same number of faces meet at a vertex. [2] This set of polyhedrons is named after Plato.
The polyhedral graph formed as the Schlegel diagram of a regular dodecahedron. In geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-connected, planar graphs.
In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.
The dodecadodecahedron is a rectification, where edges are truncated down to points. The truncated small stellated dodecahedron can be considered a degenerate uniform polyhedron since edges and vertices coincide, but it is included for completeness. Visually, it looks like a regular dodecahedron on the surface, but it has 24 faces in ...
The rhombic dodecahedron is a Voronoi cell of the other optimal way to stack spheres. The two shapes differ in their combinatorial structure as well as in their geometry: in the rhombic dodecahedron, every edge connects a degree-three vertex to a degree-four vertex, whereas the trapezo-rhombic dodecahedron has six edges that connect vertices of ...
where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.
In geometry, the chamfered dodecahedron is a convex polyhedron with 80 vertices, 120 edges, and 42 faces: 30 hexagons and 12 pentagons. It is constructed as a chamfer (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges.
Ad
related to: dodecahedron vertices and edges definition geometry worksheet pdf