Search results
Results from the WOW.Com Content Network
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
for the nth derivative. When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken. For example, the second partial derivatives of a function f(x, y) are: [6]
The last expression is the logarithmic mean. = ( >) = (>) (the Gaussian integral) = (>) = (, >) (+) = (>)(+ +) = (>)= (>) (see Integral of a Gaussian function
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
At =, however, there is a problem: the graph of the square root function becomes vertical, corresponding to a horizontal tangent for the square function. y = e x {\displaystyle y=e^{x}} (for real x ) has inverse x = ln y {\displaystyle x=\ln {y}} (for positive y {\displaystyle y} )
However, this formal similarity notwithstanding, possessing a complex-antiderivative is a much more restrictive condition than its real counterpart. While it is possible for a discontinuous real function to have an anti-derivative, anti-derivatives can fail to exist even for holomorphic functions of a complex variable.
In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [2]
The integral of secant cubed is a frequent and challenging [1] indefinite integral of elementary calculus: = + + = ( + | + |) + = ( + ) +, | | < where is the inverse Gudermannian function, the integral of the secant function.