Search results
Results from the WOW.Com Content Network
Complexity for these models will then be chosen according to the needed performance and the type of application considered. Ability to define this model is part of sensors and IMU manufacturers know-how. Sensors and IMU models are computed in factories through a dedicated calibration sequence using multi-axis turntables and climatic chambers.
From this work it is recommended to use the Cholesky decomposition method. In addition to aircraft applications, GPS/INS has also been studied for automobile applications such as autonomous navigation, [ 13 ] [ 14 ] vehicle dynamics control, [ 15 ] or sideslip, roll, and tire cornering stiffness estimation.
Inertial navigation is a self-contained navigation technique in which measurements provided by accelerometers and gyroscopes are used to track the position and orientation of an object relative to a known starting point, orientation and velocity.
GPS signals can also be affected by multipath issues, where the radio signals reflect off surrounding terrain; buildings, canyon walls, hard ground, etc. These delayed signals cause measurement errors that are different for each type of GPS signal due to its dependency on the wavelength.
Schuler tuning is a design principle for inertial navigation systems that accounts for the curvature of the Earth. An inertial navigation system, used in submarines, ships, aircraft, and other vehicles to keep track of position, determines directions with respect to three axes pointing "north", "east", and "down".
ECMs are a theoretically-driven approach useful for estimating both short-term and long-term effects of one time series on another. The term error-correction relates to the fact that last-period's deviation from a long-run equilibrium, the error, influences its short-run dynamics. Thus ECMs directly estimate the speed at which a dependent ...
The main difference between an Inertial measurement unit (IMU) and an AHRS is the addition of an on-board processing system in an AHRS, which provides attitude and heading information. This is in contrast to an IMU, which delivers sensor data to an additional device that computes attitude and heading.
An inertial reference unit (IRU) is a type of inertial sensor which uses gyroscopes (electromechanical, ring laser gyro or MEMS) and accelerometers (electromechanical or MEMS) to determine a moving aircraft’s or spacecraft’s change in rotational attitude (angular orientation relative to some reference frame) and translational position (typically latitude, longitude and altitude) over a ...