Search results
Results from the WOW.Com Content Network
Fourier transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range.
The dispersive method is more common in UV-Vis spectroscopy, but is less practical in the infrared than the FTIR method. One reason that FTIR is favored is called "Fellgett's advantage" or the "multiplex advantage": The information at all frequencies is collected simultaneously, improving both speed and signal-to-noise ratio.
FTIR spectroscopy can provide insightful information in the microstructure for different plant taxa. Cuticles is a waxy protective layer that covers plant leaves and stems to prevent loss of water. Its constituted waxy polymers are generally well-preserved in plant fossil, which can be used for functional group analysis.
The schematic representation of a nano-FTIR system with a broadband infrared source. Nano-FTIR (nanoscale Fourier transform infrared spectroscopy) is a scanning probe technique that utilizes as a combination of two techniques: Fourier transform infrared spectroscopy (FTIR) and scattering-type scanning near-field optical microscopy (s-SNOM).
Biophotonics can also be described as the "development and application of optical techniques, particularly imaging, to the study of biological molecules, cells and tissue". [2] One of the main benefits of using the optical techniques which make up biophotonics is that they preserve the integrity of the biological cells being examined.
Fourier-transform spectroscopy (FTS) is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the radiation, electromagnetic or not.
There are two main approaches to two-dimensional spectroscopy, the Fourier-transform method, in which the data is collected in the time-domain and then Fourier-transformed to obtain a frequency-frequency 2D correlation spectrum, and the frequency domain approach in which all the data is collected directly in the frequency domain.
ATR-FTIR is also used as a tool in pharmacological research to investigate protein/pharmaceutical interactions in detail. Water-soluble proteins to be investigated require Polyhistidine-tags , allowing the macromolecule to be anchored to a lipid bilayer, which is attached to a Germanium crystal or other suitable optical media.