Search results
Results from the WOW.Com Content Network
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
That is, a 16-bit signed (two's complement) integer, that is implicitly multiplied by the scaling factor 2 −12. In particular, when n is zero, the numbers are just integers. If m is zero, all bits except the sign bit are fraction bits; then the range of the stored number is from −1.0 (inclusive) to +1.0 (exclusive).
Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...
The positive and negative normalized numbers closest to zero (represented with the binary value 1 in the Exp field and 0 in the fraction field) are ±1 × 2 −1022 ≈ ±2.22507 × 10 −308; The finite positive and finite negative numbers furthest from zero (represented by the value with 2046 in the Exp field and all 1s in the fraction field) are
Decimals between 1 and 2: fixed interval 2 −23 (1+2 −23 is the next largest float after 1) Decimals between 2 and 4: fixed interval 2 −22; Decimals between 4 and 8: fixed interval 2 −21... Decimals between 2 n and 2 n+1: fixed interval 2 n-23... Decimals between 2 22 =4194304 and 2 23 =8388608: fixed interval 2 −1 =0.5
When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal to 0) is used. For IEEE standard where the base β {\displaystyle \beta } is 2 {\displaystyle 2} , this means when there is a tie it is rounded so that the last digit is equal to 0 {\displaystyle 0} .
Finite numbers, which can be described by three integers: s = a sign (zero or one), c = a significand (or coefficient) having no more than p digits when written in base b (i.e., an integer in the range through 0 to b p − 1), and q = an exponent such that emin ≤ q + p − 1 ≤ emax.
For example, if f is defined on the real numbers by = +, then 2 is a fixed point of f, because f(2) = 2. Not all functions have fixed points: for example, f(x) = x + 1 has no fixed points because x + 1 is never equal to x for any real number.