Search results
Results from the WOW.Com Content Network
The prominence of the gametophyte in the life cycle is also a shared feature of the three bryophyte lineages (extant vascular plants are all sporophyte dominant). However, if this phylogeny is correct, then the complex sporophyte of living vascular plants might have evolved independently of the simpler unbranched sporophyte present in ...
Genera such as Rhynia have a similar life-cycle but have simple tracheids and so are a kind of vascular plant. [44] It was assumed that the gametophyte dominant phase seen in bryophytes used to be the ancestral condition in terrestrial plants, and that the sporophyte dominant stage in vascular plants was a derived trait.
By contrast, mosses and other bryophytes have only a single set of chromosomes and so are haploid (i.e. each chromosome exists in a unique copy within the cell). There is a period in the moss life cycle when they do have a double set of paired chromosomes, but this happens only during the sporophyte stage.
The gametophyte is the first and dominant phase of two alternating phases in a bryophyte's life cycle. This part of the life cycle consists of protonema (the preliminary stage where the propagule develops green thread-like filaments), the rhizoids (filaments growing beneath the bryophyte that help anchor the bryophyte to its substratum), the stem, the leaves, its reproductive structure ...
The entire gametophyte generation, with the sole exception of pollen grains (microgametophytes), is contained within the sporophyte. The life cycle of a dioecious flowering plant (angiosperm), the willow, has been outlined in some detail in an earlier section (A complex life cycle). The life cycle of a gymnosperm is similar.
Life forms: (1) Phanerophyte, (2; 3) Chamaephyte, (4) Hemicryptophyte, (5; 6) Geophyte, (7) Helophyte, (8; 9) Hydrophyte. Therophyte and epiphyte are not shown. The Raunkiær system is a system for categorizing plants using life-form categories, devised by Danish botanist Christen C. Raunkiær and later extended by various authors.
Pteridophyte life cycle. Just as with bryophytes and spermatophytes (seed plants), the life cycle of pteridophytes involves alternation of generations. This means that a diploid generation (the sporophyte, which produces spores) is followed by a haploid generation (the gametophyte or prothallus, which produces gametes). Pteridophytes differ ...
When this happens, the sperm and egg cell fuse to form a zygote, the cell from which the sporophyte stage of the life cycle will develop. Unlike all other bryophytes, the first cell division of the zygote is longitudinal. Further divisions produce three basic regions of the sporophyte.