Search results
Results from the WOW.Com Content Network
Gamma rays are produced during gamma decay, which normally occurs after other forms of decay occur, such as alpha or beta decay. A radioactive nucleus can decay by the emission of an α or β particle. The daughter nucleus that results is usually left in an excited state. It can then decay to a lower energy state by emitting a gamma ray photon ...
Gamma radiation detected in an isopropanol cloud chamber. Gamma (γ) radiation consists of photons with a wavelength less than 3 × 10 −11 m (greater than 10 19 Hz and 41.4 keV). [4] Gamma radiation emission is a nuclear process that occurs to rid an unstable nucleus of excess energy after most nuclear reactions. Both alpha and beta particles ...
A monochromatic wave (a wave of a single frequency) consists of successive troughs and crests, and the distance between two adjacent crests or troughs is called the wavelength. Waves of the electromagnetic spectrum vary in size, from very long radio waves longer than a continent to very short gamma rays smaller than atom nuclei.
A gamma wave or gamma rhythm is a pattern of neural oscillation in humans with a frequency between 30 and 100 Hz, the 40 Hz point being of particular interest. [1] Gamma waves with frequencies between 30 and 70 hertz may be classified as low gamma , and those between 70 and 150 hertz as high gamma .
The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications. Radio waves, at the low-frequency end of the spectrum, have the lowest photon energy and the longest wavelengths—thousands of kilometers, or more.
The ratio of primary cosmic ray hadrons to gamma rays also gives a clue as to the origin of cosmic rays. Although gamma rays could be produced near the source of cosmic rays, they could also be produced by interaction with cosmic microwave background by way of the Greisen–Zatsepin–Kuzmin limit cutoff above 50 EeV. [4]
Since then, numerous satellite gamma-ray observatories have mapped the gamma-ray sky. The most recent is the Fermi Observatory, which has produced a map showing a narrow band of gamma ray intensity produced in discrete and diffuse sources in our galaxy, and numerous point-like extra-galactic sources distributed over the celestial sphere.
Air showers of elementary particles made by gamma rays can also be distinguished from those produced by cosmic rays by the much greater depth of shower maximum, and the much lower quantity of muons. [7] Very-high-energy gamma rays are too low energy to show the Landau–Pomeranchuk–Migdal effect. Only magnetic fields perpendicular to the path ...