Search results
Results from the WOW.Com Content Network
Gamma rays are produced during gamma decay, which normally occurs after other forms of decay occur, such as alpha or beta decay. A radioactive nucleus can decay by the emission of an α or β particle. The daughter nucleus that results is usually left in an excited state. It can then decay to a lower energy state by emitting a gamma ray photon ...
The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications. Radio waves, at the low-frequency end of the spectrum, have the lowest photon energy and the longest wavelengths—thousands of kilometers, or more.
Gamma radiation detected in an isopropanol cloud chamber. Gamma (γ) radiation consists of photons with a wavelength less than 3 × 10 −11 m (greater than 10 19 Hz and 41.4 keV). [4] Gamma radiation emission is a nuclear process that occurs to rid an unstable nucleus of excess energy after most nuclear reactions. Both alpha and beta particles ...
A monochromatic wave (a wave of a single frequency) consists of successive troughs and crests, and the distance between two adjacent crests or troughs is called the wavelength. Waves of the electromagnetic spectrum vary in size, from very long radio waves longer than a continent to very short gamma rays smaller than atom nuclei.
The ratio of primary cosmic ray hadrons to gamma rays also gives a clue as to the origin of cosmic rays. Although gamma rays could be produced near the source of cosmic rays, they could also be produced by interaction with cosmic microwave background by way of the Greisen–Zatsepin–Kuzmin limit cutoff above 50 EeV. [4]
Likewise, gamma radiation and X-rays were found to be high-energy electromagnetic radiation. The relationship between the types of decays also began to be examined: For example, gamma decay was almost always found to be associated with other types of decay, and occurred at about the same time, or afterwards.
Air showers of elementary particles made by gamma rays can also be distinguished from those produced by cosmic rays by the much greater depth of shower maximum, and the much lower quantity of muons. [7] Very-high-energy gamma rays are too low energy to show the Landau–Pomeranchuk–Migdal effect. Only magnetic fields perpendicular to the path ...
Electromagnetic radiation consists of photons, which can be thought of as energy packets, traveling in the form of a wave. [4] Examples of electromagnetic radiation includes X-rays and gamma rays (see photo "Types of Electromagnetic Radiation"). [4] These types of radiation can easily penetrate the human body because of high energy. [4]