Search results
Results from the WOW.Com Content Network
The cone penetration or cone penetrometer test (CPT) is a method used to determine the geotechnical engineering properties of soils and delineating soil stratigraphy. It was initially developed in the 1950s at the Dutch Laboratory for Soil Mechanics in Delft to investigate soft soils.
The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil. This test is the most frequently used subsurface exploration drilling test performed worldwide. The test procedure is described in ISO 22476-3, ASTM D1586 [1] and Australian Standards AS ...
A direct shear test is a laboratory or field test used by geotechnical engineers to measure the shear strength properties of soil [1] [2] or rock [2] material, or of discontinuities in soil or rock masses. [2] [3] The U.S. and U.K. standards defining how the test should be performed are ASTM D 3080, AASHTO T236 and BS 1377-7:1990
At the centre of the consolidation cell is a sample ring where the soil sample is held. The sample ring is typically shaped like a cookie cutter, with a sharp edge on one side, so the ring can be used to cut out a sample slice of soil from a larger block of natural soil. Two slices of porous stone, which fit snugly into the sample ring, provide ...
The CBR test is a penetration test in which a standard piston, with a diameter of 50 mm (1.969 in), is used to penetrate the soil at a standard rate of 1.25 mm/minute. Although the force increases with the depth of penetration, in most cases, it does not increase as quickly as it does for the standard crushed rock, so the ratio decreases.
Triaxial apparatus with sample attached ready for testing. In materials science, a triaxial shear test is a common method to measure the mechanical properties of many deformable solids, especially soil (e.g., sand, clay) and rock, and other granular materials or powders.
There are many types of penetrometer designed to be used on soil. They are usually round or cone shaped. The penetrometer is dropped on the test subject or pressed against it and the depth of the resulting hole is measured. The measurements find whether the soil is strong enough to build a road on.
The test reports loss of mass to abrasion and impact, expressed as a percentage of initial sample mass. [7] Maximum acceptable loss for the base course of the road is 45%; the more demanding surface course must be 35% or less. [1] The test was developed by the city engineers of Los Angeles in the 1920s. [8]