Search results
Results from the WOW.Com Content Network
Red blood cells (RBCs), referred to as erythrocytes (from Ancient Greek erythros ' red ' and kytos ' hollow vessel ', with -cyte translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, [1] erythroid cells, and rarely haematids, are the most common type of blood cell and the vertebrate's principal means of delivering oxygen (O 2) to the body tissues ...
Red blood cells or erythrocytes primarily carry oxygen and collect carbon dioxide through the use of hemoglobin. [2] Hemoglobin is an iron-containing protein that gives red blood cells their color and facilitates transportation of oxygen from the lungs to tissues and carbon dioxide from tissues to the lungs to be exhaled. [3]
All blood cells are divided into three lineages. [9] Red blood cells, also called erythrocytes, are the oxygen-carrying cells. Erythrocytes are functional and are released into the blood. The number of reticulocytes, immature red blood cells, gives an estimate of the rate of erythropoiesis. Lymphocytes are the cornerstone of the adaptive immune ...
The combined surface area of all red blood cells of the human body would be roughly 2,000 times as great as the body's exterior surface. [ 14 ] 4,000–11,000 leukocytes : [ 15 ] White blood cells are part of the body's immune system ; they destroy and remove old or aberrant cells and cellular debris, as well as attack infectious agents ...
A feedback loop involving erythropoietin helps regulate the process of erythropoiesis so that, in non-disease states, the production of red blood cells is equal to the destruction of red blood cells and the red blood cell number is sufficient to sustain adequate tissue oxygen levels but not so high as to cause sludging, thrombosis, or stroke ...
Nevertheless, if the binding capacities of haptoglobin and hemopexin are saturated [note 1], the remaining "free hemoglobin" in the plasma will be oxidized to met-hemoglobin eventually, and then further disassociates into free heme and others. [3] At this stage, the "free heme" will bind to albumin, forming met-hemalbumin.
Chloride shift (also known as the Hamburger phenomenon or lineas phenomenon, named after Hartog Jakob Hamburger) is a process which occurs in a cardiovascular system and refers to the exchange of bicarbonate (HCO 3 −) and chloride (Cl −) across the membrane of red blood cells (RBCs).
The human body's rate of iron absorption appears to respond to a variety of interdependent factors, including total iron stores, the extent to which the bone marrow is producing new red blood cells, the concentration of hemoglobin in the blood, and the oxygen content of the blood.