Search results
Results from the WOW.Com Content Network
Lignin is found to be degraded by enzyme lignin peroxidases produced by some fungi like Phanerochaete chrysosporium. The mechanism by which lignin peroxidase (LiP) interacts with the lignin polymer involves veratrole alcohol , which is a secondary metabolite of white rot fungi that acts as a cofactor for the enzyme.
Production of lignin-peroxidase and manganese-peroxidase is the hallmark of basidiomycetes and is often used to assess basidiomycete activity, especially in biotechnology applications. [38] Most white-rot species also produce laccase, a copper-containing enzyme that degrades polymeric lignin and humic substances.
Lignin-modifying enzymes benefit industry as they can break down lignin; a common waste product of the paper and pulp industry. These enzymes have been used in the refinement of poplar as lignin inhibits the enzymatic hydrolysis of treated poplar and Lignin-modifying enzymes can efficiently degrade the lignin thus fixing this problem. [4]
Although laccase is known to crosslink AX, under the microscope it was found that the laccase also acted on the flour proteins. Oxidation of the ferulic acid on AX to form ferulic acid radicals increased the oxidation rate of free SH groups on the gluten proteins and thus influenced the formation of S-S bonds between gluten polymers. [13]
A solution of hydrochloric acid and phloroglucinol is used for the detection of lignin (Wiesner test). A brilliant red color develops, owing to the presence of coniferaldehyde groups in the lignin. [44] Thioglycolysis is an analytical technique for lignin quantitation. [45] Lignin structure can also be studied by computational simulation. [46]
Flax seeds and sesame seeds contain high levels of lignans. [1] [8] The principal lignan precursor found in flaxseeds is secoisolariciresinol diglucoside.[1] [8] Other foods containing lignans include cereals (rye, wheat, oat and barley), soybeans, tofu, cruciferous vegetables (such as broccoli and cabbage), and some fruits (particularly apricots and strawberries). [1]
Lignin confers structural integrity to plants. Lignin is so heterogeneous and so recalcitrant that its value is almost exclusively measured as a fuel. hemicellulose is composed of branched polysaccharides. A particular problem is that hemicellulose is covalently linked to lignin, usually through ferulic acid component of the
Wood is composed of primarily three types of tissue: lignin, cellulose, and hemicelluloses. White rot species of Polyporales are efficient degraders of the decay-resistant polymer lignin, leaving partially degraded cellulose as a residue. [13] Brown rot species break down the cellulose fibres, leaving a brittle, brown lignin residue.